Imperial College
London

Engineering and Physical Sciences
Research Council

crSRC

QUEST, QUBITS,

A.M. Abdulla, D. Crick, R.J. Hendricks, K. Koo, H. Ohadi, E.S. Phillips*,

QGATES
D.M. Segal and R.C. Thompson
Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
*now at: Institut fur Experimentalphysik, Universitat Innsbruck, Technikerstralde 25, A-6020 Innsbruck, Austria
~ N N )
_ . . Typlcal motional _ _ _ Magnetron Both Cyclotron Both  Magnetron
lon traps have been proposed as an ideal system in which to attempt small-scale quantum . s (KHa)- * In frame rotating at o./2, the two radial motions
information processing (QIP). The demonstrations to date have been in radiofrequency (RF) Fluorescence requencies (kHz): are circular but in opposite directions Q \ Q / Q
traps. Th_ere can be heating of the ions as a result. of micromotio.n gaused by the trapping field. Collection True cyclotron o, eB 27 X 376 » Typically, magnetron has large orbit and modified
The Penning trap, which employs only static electric and magnetic fields, may allow lower s ] m » . . .
. . . egmented 0 9 cyclotron has small orbit: combine to give elliptical
heating rates of the ions and longer series of quantum gates. T R — o _ Yo ¢ - _ Without quadrupole
iy Y17 T orbit in rotating frame oN ’
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 To measure damping rate, excite ion with signal near 1:;’ L - Magnetron and modified cyclotron motions are classical coupled oscillators - Axialization in presence of laser cooling achieved with Ca* ions
motional frequency S - * As the (coupling) axialization drive » (previously only demonstrated with Mg* ions, Ref. [4])
* Treat system as a forced damped harmonic oscillator ‘2‘3 frequency is scanned through j » Ca™ already shown elsewhere to be a viable candidate for
 Force comes from dipolar excitation voltage across ring | an avoided crossing is predicted 24.2 - jon-trap quantum computing (Ref. [5])
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